Overview

- Problem Identification
- Project Goals
- Team Breakdown
- DTW
- Pure Data
- Project Specifications
- Implementation
- Digital Effects
- Schedules
- Summary

Problem Identification

 Guitar effect pedals physically restrain the guitar player

Effect pedals require presence of mind on the part of

the performer

Analog and digital effects pedals are costly

Project Goals

- Develop a software platform to analyze a time sequence of notes and trigger guitar effects as instructed
- Trigger on a designated instance that occurs multiple times throughout the song
- Mitigate the latency between a detected match and the triggering event
- Process sequences up to 10 note onsets per second

Team Breakdown

Bryan Guner	Team Lead - Develop a protocol for digital signal processing of the guitar signal in order to create a time-sequential record of the frequency content of the guitar signal and a comparison between pre recorded songs and live performances.
Ralph Quinto	Software Engineer - Research for possible programming platforms. Responsible for reading electric guitar signals, creating the signal analysis patches in pure data, and triggering digital guitar effects.
Haley Scott	Architectural Manager - Responsible for ensuring successful integration of project components, researching system methods, designing digital effects, project and organizational management.

Dynamic Time Warping

- Algorithm for the measurement of similarity between two temporal sequences
- Calculates an optimal match in the form of a distance that is the sum of localized cost functions

Dynamic Time Warping Matching

DTW Path

The process can be thought of conceptually as arranging the two sequences on the sides of a grid
Each cell within the grid will be filled in

with a distance measure comparing

the corresponding elements of the two

sequences

How DTW Works

- To find the best path through the grid, we search for a path that minimizes the total distance between them
- Without optimizations, all possible paths through the grid are calculated and a minimum is selected

Why DTW?

- DTW is relatively insensitive to time-scale contraction or dilation in either the database or query signals
- A slightly erroneous performance will register a match as long as the section is the closest match to the database sequence relative to what's been processed so far
- The algorithm is commonplace in most speech dictation software and has a wide scope of applications such as gesture recognition

Basic Dynamic Time Warping

Background (Pure Data)

- Visual programming language (LabView)
 - Objects are linked together to model the flow of control and audio
 - Designed for creating interactive computer music and multimedia works
 - Generate Waveforms
 - Perform Signal Analysis
- Modular code base
 - Externals could be generated using C, C++, Python, Java, and many more
- Open source project listed under a modified BSD License
 - all distributed copies of the source code must contain the BSD license

Project Specs (PD & Physical Components)

- Pure Data Specs
 - Sampling rate of 44,100 Hz
 - Fiddle uses 1024 most recent samples to produce midi data
- Electric Guitar: Ibanez RG5EX1
 - Bridge Pickup: Infinity 4
 - ♦ Magnet: Ceramic
 - \diamond DC Resistance: 15.6 K Ω
 - Gauges: .009/.011/.016/.024/.032/.042

Block Diagram of Simplified PD Patch

Current PD Recording

Current PD Implementation

Testing and Validation

Tested different sequences Single Notes ▲ Consistent triggering \rightarrow Chords Inconsistent triggering Record system clock at input and triggering Took difference to measure latency 1-2 ms ➡ 44100/1024 = 44 notes per second

Issues With Approach

- Currently triggers on the first instance of trigger sequence
- Accuracy in chord detection (trigger sequence length)
- Match detection versus actual desired trigger point
- User familiarity with PD / ease of use

Future Improvements

- Subsequence tracking over DTW matching
- Application to control actions other than guitar effects
- Interface kit for analog effect pedals
- User GUI external to PD patch
- Hybrid of other candidate techniques to serve as false trigger fail safe

Reverb Effect

- Creates the sound of a performance in a concert hall
- Mirrors a large
 number of
 reflections to build
 up and then decay

Delay Effect

- Creates the sound of a repeating, decaying echo
- Delwrite block allocates memory for a delay line
- Delread block reads the signal from a delay line

Fuzz Effect

 Creates the sound of a distorted, heavier guitar
 Clip block restricts a signal to lie between two limits

Spectral Delay Effect

- Creates the sound of a repeating echo, with harmonics ringing at different times
- FFT divides frequencies into smaller bins, which each have a different delay applied

Project Schedule

	Se	pter	mbe	r	October					No	ver	nber	r	Dec	-	January						ebru	ary		March					April						
5	36	37	38 3	39 4	40 4	1	42	43	44	45	46	47	48	49 5	0	51 5	52	1	2	3	4	5	6	7	8	9	10) 11	1 12	13	14	15	16	17	18	
	Documentation																																			
	Current Stage																																			
	Primary Research Auxiliary Research																																			
Candidate Selection																																				
Software Platform Selection																												_	_							
Hardware Selection																																				
			DTW																																	
						Pure Data																														
Acquisition																_	_																			
		Prototyping																																		
				_		Digitization of Signal																														
	_			_	Counting Implementation																	-														
	DTW Implementation																-																			
	_			_		Iesting and Method Improvement															-															
	_			_		_	Basic Functionality																-													
				_		_																					\vdash									
											Adjustments																									
+																									+											
	_						_								-			-	_	_							-	-		Ei	ma nali		Proi	ect		H
	Procentation Descention														H																					
	-	_												Doeia	n E	Povid	Pre	se	mau	on	Fre	pa	all	on						Fi	nal					Н
						Design Reviews Final																														

Time Budget

Spending Budget

Summary

- Created an automatic guitar effect trigger system using DTW
 - Capable of triggering any digital effect
- Design criteria met:
 - Trigger latency of <= 1 second (2 ms)
 - Minimum note onset separation of 10 notes per second
 - ♦ 43 notes / sec (detect a new note every 23 ms)
 - Concurrent effects triggering

Questions?

