A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|. For example, given three people living at (0,0), (0,4), and (2,2): 1 - 0 - 0 - 0 - 1 | | | | | 0 - 0 - 0 - 0 - 0 | | | | | 0 - 0 - 1 - 0 - 0 The point (0,2) is an ideal meeting point, as the total travel distance of 2+2+2=6 is minimal. So return 6. Hint: Try to solve it in one dimension first. How can this solution apply to the two dimension case?