Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11
(i.e.,
2 + 3 + 5 +
1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
Define f(i, j)
to be the minimum path sum from
triangle[0][0]
to triangle[i][j]
.
f(i, 0) = f(i-1, j) + triangle[i][0]
f(i, j) = min( f(i-1, j-1), f(i-1, j) ) + triangle[i][j], 0 < j < i
f(i, i) = f(i-1, i-1) + triangle[i][i], i > 0
Dynamic array can be used.
/**
* @param {number[][]} triangle
* @return {number}
*/
let minimumTotal = function (triangle) {
if (triangle.length <= 0) {
return 0;
}
const dp = [triangle[0][0]];
for (let i = 1; i < triangle.length; i++) {
dp[i] = dp[i - 1] + triangle[i][i];
for (let j = i - 1; j >= 1; j--) {
dp[j] = Math.min(dp[j], dp[j - 1]) + triangle[i][j];
}
dp[0] += triangle[i][0];
}
return Math.min(...dp);
};
☆: .。. o(≧▽≦)o .。.:☆☆: .。. o(≧▽≦)o .。.:☆☆: .。. o(≧▽≦)o .。.:☆
☆: .。. o(≧▽≦)o .。.:☆☆: .。. o(≧▽≦)o .。.:☆