Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree [1,2,2,3,4,4,3]
is symmetric:
1
/ \
2 2
/ \ / \
3 4 4 3
But the following [1,2,2,null,3,null,3]
is not:
1
/ \
2 2
\ \
3 3
Note: Bonus points if you could solve it both recursively and iteratively.
The result of pre-order and post-order traversal on a symmetric tree should be the same.
So just like 100. Same Tree. Except one is pre-order traversal and the other is post-order.
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} root
* @return {boolean}
*/
let isSymmetric = function (root) {
return root === null || isSymmetricTree(root.left, root.right);
};
/**
* @param {TreeNode} p
* @param {TreeNode} q
* @return {boolean}
*/
function isSymmetricTree(p, q) {
return (
(p === null && q === null) ||
(p !== null &&
q !== null &&
p.val === q.val &&
isSymmetricTree(p.left, q.right) &&
isSymmetricTree(p.right, q.left))
);
}
Level order traversal. Check symmetry before entering the next level.
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} root
* @return {boolean}
*/
let isSymmetric = function (root) {
if (root === null) {
return true;
}
const queue = [NaN, root];
while (queue.length > 1) {
const node = queue.shift();
if (node !== node) {
for (let i = 0, j = queue.length - 1; i <= j; i++, j--) {
if (
(queue[i] === null && queue[j] !== null) ||
(queue[i] !== null && queue[j] === null) ||
(queue[i] !== null &&
queue[j] !== null &&
queue[i].val !== queue[j].val)
) {
return false;
}
}
queue.push(NaN);
} else {
if (node !== null) {
queue.push(node.left);
queue.push(node.right);
}
}
}
return true;
};
☆: .。. o(≧▽≦)o .。.:☆☆: .。. o(≧▽≦)o .。.:☆☆: .。. o(≧▽≦)o .。.:☆
☆: .。. o(≧▽≦)o .。.:☆☆: .。. o(≧▽≦)o .。.:☆