85. Maximal Rectangle

Problem:

Given a 2D binary matrix filled with 0’s and 1’s, find the largest rectangle containing only 1’s and return its area.

Example:

Input:
[
  ["1","0","1","0","0"],
  ["1","0","1","1","1"],
  ["1","1","1","1","1"],
  ["1","0","0","1","0"]
]
Output: 6

Solution:

ONE

View every row as a base line then we just have to solve height(matrix) times the problem of 84. Largest Rectangle in Histogram.

/**
 * @param {character[][]} matrix
 * @return {number}
 */
let maximalRectangle = function (matrix) {
  const height = matrix.length;
  if (height <= 0) {
    return 0;
  }
  const width = matrix[0].length;
  if (width <= 0) {
    return 0;
  }

  const heights = [];
  let max = 0;
  for (let row = 0; row < height; row++) {
    for (let col = 0; col < width; col++) {
      heights[col] = ((heights[col] || 0) + 1) * matrix[row][col];
    }
    max = Math.max(max, largestRectangleArea(heights));
  }

  return max;
};

/**
 * @param {number[]} heights
 * @return {number}
 */
function largestRectangleArea(heights) {
  const stack = [-1];
  let max = 0;
  for (let i2 = 0; i2 <= heights.length; i2++) {
    while ((heights[i2] || 0) < heights[stack[stack.length - 1]]) {
      const i = stack.pop();
      const i1 = stack[stack.length - 1];
      max = Math.max(max, heights[i] * (i2 - i1 - 1));
    }
    stack.push(i2);
  }
  return max;
}

TWO

Same idea as above. Use DP to cache accumulated states.

Pick a pivot point (row, col) and assume it is on the base line. The adjoining 1s above (row, col) makes up the height of the rectangle. The width of the rectangle is determined by how many ajoining bars are taller than the pivot bar.

So for the rectangle whose bottom pivot is (row, col):

Also:

With conLeft and conRight we can know if the rectangle on (row, col) shrinks comparing to (row-1, col).

if matrix[row][col] == 1
  height(row, col) = height(row-1, col) + 1

  // see how long this horizontal line can get
  conLeft(row, col) = conLeft(row, col-1)
  conRight(row, col) = conRight(row, col+1)

  // width can only be shorter
  left(row, col) = max( left(row-1, col), conLeft(row, col) )
  right(row, col) = min( right(row-1, col), conRight(row, col) )

if matrix[row][col] == 0
  height(row, col) = 0
  conLeft(row, col) = col + 1
  conRight(row, col) = col - 1
  left(row, col) = 0 // back to leftmost position
  right(row, col) = matrix.width // back to rightmost position

area(row, col) = (right(row, col) - left(row, col) + 1) * height(row, col)

We only need to keep the last state. Use dynamic arrays to reduce space complexity.

/**
 * @param {character[][]} matrix
 * @return {number}
 */
let maximalRectangle = function (matrix) {
  const height = matrix.length;
  if (height <= 0) {
    return 0;
  }
  const width = matrix[0].length;
  if (width <= 0) {
    return 0;
  }

  const heights = new Array(width).fill(0);
  const lefts = new Array(width).fill(0);
  const rights = new Array(width).fill(width);

  let max = 0;

  for (let row = 0; row < height; row++) {
    let conLeft = 0;
    let conRight = width - 1;
    for (let col = 0; col < width; col++) {
      if (matrix[row][col] === "1") {
        heights[col] = heights[col] + 1;
        lefts[col] = Math.max(lefts[col], conLeft);
      } else {
        heights[col] = 0;
        lefts[col] = 0;
        conLeft = col + 1;
      }
    }

    for (let col = width - 1; col >= 0; col--) {
      if (matrix[row][col] === "1") {
        rights[col] = Math.min(rights[col], conRight);
      } else {
        rights[col] = width;
        conRight = col - 1;
      }
    }

    for (let col = 0; col < width; col++) {
      max = Math.max(max, (rights[col] - lefts[col] + 1) * heights[col]);
    }
  }

  return max;
};

: .。. o(≧▽≦)o .。.:☆☆: .。. o(≧▽≦)o .。.:☆☆: .。. o(≧▽≦)o .。.:



: .。. o(≧▽≦)o .。.:☆☆: .。. o(≧▽≦)o .。.: