52. N-Queens II

Problem:

The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.

8-queens.png
8-queens.png

Given an integer n, return the number of distinct solutions to the n-queens puzzle.

Example:

Input: 4
Output: 2
Explanation: There are two distinct solutions to the 4-queens puzzle as shown below.
[
 [".Q..",  // Solution 1
  "...Q",
  "Q...",
  "..Q."],

 ["..Q.",  // Solution 2
  "Q...",
  "...Q",
  ".Q.."]
]

Solution:

Just modify 51. N-Queens.

/**
 * @param {number} n
 * @return {string[][]}
 */
let totalNQueens = function (n) {
  return _totalNQueens(
    [...new Array(n)].map((_, i) => i),
    0
  );
};

function _totalNQueens(queens, iStart, result) {
  if (iStart === queens.length) {
    return 1;
  }

  let count = 0;

  const start = queens[iStart];
  for (let i = iStart; i < queens.length; i++) {
    const next = queens[i];

    queens[iStart] = next;
    queens[i] = start;

    if (_testDiagonal(queens, iStart)) {
      count += _totalNQueens(queens, iStart + 1, result);
    }

    queens[iStart] = start;
    queens[i] = next;
  }

  return count;
}

function _testDiagonal(queens, iStart) {
  for (let i = 0; i < iStart; i++) {
    if (Math.abs(queens[iStart] - queens[i]) === iStart - i) {
      return false;
    }
  }
  return true;
}

: .。. o(≧▽≦)o .。.:☆☆: .。. o(≧▽≦)o .。.:☆☆: .。. o(≧▽≦)o .。.:



: .。. o(≧▽≦)o .。.:☆☆: .。. o(≧▽≦)o .。.: