The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return the number of distinct solutions to the n-queens puzzle.
Example:
Input: 4
Output: 2
Explanation: There are two distinct solutions to the 4-queens puzzle as shown below.
[
[".Q..", // Solution 1
"...Q",
"Q...",
"..Q."],
["..Q.", // Solution 2
"Q...",
"...Q",
".Q.."]
]
Just modify 51. N-Queens.
/**
* @param {number} n
* @return {string[][]}
*/
let totalNQueens = function (n) {
return _totalNQueens(
[...new Array(n)].map((_, i) => i),
0
);
};
function _totalNQueens(queens, iStart, result) {
if (iStart === queens.length) {
return 1;
}
let count = 0;
const start = queens[iStart];
for (let i = iStart; i < queens.length; i++) {
const next = queens[i];
queens[iStart] = next;
queens[i] = start;
if (_testDiagonal(queens, iStart)) {
count += _totalNQueens(queens, iStart + 1, result);
}
queens[iStart] = start;
queens[i] = next;
}
return count;
}
function _testDiagonal(queens, iStart) {
for (let i = 0; i < iStart; i++) {
if (Math.abs(queens[iStart] - queens[i]) === iStart - i) {
return false;
}
}
return true;
}
☆: .。. o(≧▽≦)o .。.:☆☆: .。. o(≧▽≦)o .。.:☆☆: .。. o(≧▽≦)o .。.:☆
☆: .。. o(≧▽≦)o .。.:☆☆: .。. o(≧▽≦)o .。.:☆